by Roy Lee
Goal: In 12 months, go from Python beginner → building and deploying your own ML/DL models. Study pace assumes ~6–8 hrs/week.
<aside> 💡
<aside> <img src="/icons/die1_gray.svg" alt="/icons/die1_gray.svg" width="40px" />
breakpoint()
.W2. Booleans, comparisons, if/elif/else
; basic arithmetic & precedence.
W3. Loops (for/while
), range
, enumerate
, early exits.
W4. Functions: parameters, returns, scope, docstrings; simple testing with assert
.
W5. Built‑ins & collections: list
, tuple
, dict
, set
; list/dict methods.
W6. Comprehensions, unpacking, *args/**kwargs
, lambdas.
W7. Files & paths: read/write, CSV basics; exceptions & error messages.
W8. Modules/packages, imports, project layout, __main__
guard.
W9. Iterators/generators, yield
, lazy eval; intro to time/datetime
.
W10. OOP basics: classes, __init__
, methods, __repr__
.
W11. Testing & quality: pytest
, type hints, mypy
, formatting with black
.
W12. Algorithms & Big‑O intuition: sorting, searching, dict/set performance.
Milestone A (end of W12): CLI mini‑app (e.g., expense tracker or quiz app) with tests.
</aside>
W13. NumPy: ndarrays, shapes, dtypes, broadcasting, vectorization.
W14. Pandas: Series/DataFrame, indexing, cleaning, joins, groupby.
W15. Visualization: Matplotlib basics; readable charts; saving figures.
W16. Probability & stats for ML I: distributions, sampling, confidence intuition.
W17. Probability & stats II: correlation vs causation, hypothesis testing (intuitive).
W18. Linear algebra for ML: vectors, matrices, dot product, norms; with NumPy.
W19. Calculus for ML (practical): gradients, numerical differentiation.
W20. Optimization intuition: gradient descent, learning rate, convex vs non‑convex.
W21. Data prep: feature engineering, scaling, pipelines, leakage avoidance.
W22. Model training 101 with scikit‑learn: train/test split, CV, metrics.